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The force and torque on a particle that translates, rotates, or is held stationary in an 
incident flow within a channel with parallel-sided walls, are considered in the limit of 
Stokes flow. Assuming that the particle has an axisymmetric shape with axis 
perpendicular to the channel walls, the problem is formulated in terms of a boundary 
integral equation that is capable of describing arbitrary three-dimensional Stokes flow 
in an axisymmetric domain. The method involves: (a) representing the flow in terms of 
a single-layer potential that is defined over the physical boundaries of the flow as well 
as other external surfaces, (b) decomposing the polar cylindrical components of the 
velocity, boundary surface force, and single-layer potential in complex Fourier series, 
and (c) collecting same-order Fourier coefficients to obtain a system of one- 
dimensional Fredholm integral equations of the first kind for the coefficients of the 
surface force over the traces of the natural boundaries of the flow in an azimuthal 
plane. In the particular case where the polar cylindrical components of the boundary 
velocity exhibit a first harmonic dependence on the azimuthal angle, we obtain a 
reduced system of three real integral equations. A numerical method of solution that 
is based on a standard boundary element-collocation procedure is developed and 
tested. For channel flow, the effect of domain truncation on the nature of the far flow 
is investigated with reference to plane Hagen-Poiseuille flow past a cylindrical post. 
Numerical results are presented for the force and torque exerted on a family of oblate 
spheroids located above a single plane wall or within a parallel-sided channel. The 
effect of particle shape on the structure of the flow is illustrated, and some novel 
features of the motion are discussed. The numerical computations reveal the range of 
accuracy of previous asymptotic solutions for small or tightly fitting spherical particles. 

1. Introduction 
Particle motions in viscous flows are encountered in a broad range of natural, 

engineering, and biomedical applications, and their study has spawned a large body of 
theoretical and computational research. Early studies are reviewed by Happel & 
Brenner (1983) and Clift, Grace & Weber (1978), and more recent developments are 
discussed by Kim & Karrila (1991). One class of studies have considered the mobility 
problem where the main objective is to evaluate the linear and angular velocity of a 
particle that moves under the influence of a specified force or torque, as well as the 
complementary resistance problem whose objective is to evaluate the force and torque 
exerted on a particle that moves in a specified manner. Other studies are concerned 
with the structure of shear flow past particles with an objective to study the kinematics 
of the flow and evaluate the effective stresses in a suspension of particles regarded as 
a homogeneous medium. 

The particular problem of interest in this paper is the motion of particles in an 
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infinite channel with parallel plane walls, known as the Hele-Shaw cell. We are 
interested in computing the force and torque exerted on a particle that (a)  translates 
or rotates in an otherwise quiescent fluid, or (b)  is held stationary in an incident linear 
or parabolic flow. These results are prerequisite for calculating the trajectories and 
residence times of particles that move under the influence of a specified force or torque, 
or are freely convected in plane Couette or plane Poiseuille flow. 

Interest in particle motions in the Hele-Shaw cell is motivated by two areas of 
application. The first area concerns the coating of liquids in the manufacturing of 
photographic films and magnetic tapes, by means of the slide coating method. In this 
method, the liquid to be coated is supplied into a narrow channel, which is part of the 
coating die, it exits the channel, flows down an inclined slide, and is then transferred 
onto a moving substratum. Often, owing to fluctuations in manufacturing conditions 
and material imperfections, the coated liquid contains impurities in the form of gel 
agglomerates and air bubbles. These particles introduce flow disturbances that are 
responsible for coating non-uniformities. Computing the residence time of the particles 
and the associated disturbance flow within the coating die is necessary for controlling 
the operation of the die and for improving the overall design of the coating process 
(Vrahopoulou 1992). 

The second area of application concerns the motion of red blood cells through 
certain biological media. One example is blood flow through the flattened capillary 
network separating adjacent alveoli, the smallest units of space in the lung, called the 
interalveoral septum (Fung 1984). The flow channel is comprised of two parallel 
interalveoral walls that are held apart by a two-dimensional array of avascular septa1 
posts. The blood cells move within the alveoral vascular space between the interalveoral 
walls, swinging to left and right in order to avoid the intercepting avascular posts. At 
the arterioral level, the thickness of the interalveoral septum may be as low as two or 
three times the cell diameter. As a first step towards assessing the residence time of 
blood cells in the interalveoral septum, we consider their convection velocity in plane 
Poiseuille flow, neglecting the presence of the posts. Another related application 
concerns the motion of red blood cells through the spleen and the bone marrow 
(Halpern & Secomb 1992). In the spleen, red blood cells move through venous sinuses; 
aged cells cannot withstand the developing shear stresses, break up, and are thus 
removed from the circulatory system. 

There are a number of previous studies of particle motions in Stokes flow in the 
presence of one or two parallel walls. Series solutions in bipolar coordinates and 
asymptotic solutions for small particle-wall spacings are available for flow due to a 
sphere executing rigid-body motion above a plane wall, as well as for shear flow past 
a stationary sphere (see Goldman, Cox & Brenner 1967a, b ;  O’Neill & Stewartson 
1967, and references therein). The corresponding flows for toroidal particles, prolate 
and oblate spheroids, and biconcave disks, were studied by Wakiya (1 959), Kucaba- 
Pietal (1986), and Hsu & Ganatos (1989) using boundary integral and singularity 
methods. Ganatos et al. (1980~1, b, 1982) considered the flow around a spherical 
particle and the motion of a settling or freely suspended particle between two parallel 
walls, and compared their results to those predicted by previous asymptotic solutions 
for small particles, obtained using the method of reflections. De Mestre (1973) 
considered the motion of a slender cylinder placed midway between two parallel plates, 
and Halpern & Secomb (1991) considered the motion of tightly-fitting disk-shaped 
particles in a parallel-sided channel. The former is based on the method of reflections, 
and the latter on the theory of lubricating flow. A number of other authors have 
considered the flow about, and the motion of, solitary or arrays of two-dimensional 
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(cylindrical) particles placed between two parallel plates (see Dvinski & Pope1 
1987a, b ;  Zhou & Pozrikidis 1993). 

One goal of the present paper is to illustrate the motion of non-spherical particles 
with emphasis on investigating the significance of particle shape, size, and aspect ratio. 
To this end, we note that oblate and disk-like shapes are of particular bioengineering 
importance, as they provide good approximations to the shapes assumed by red blood 
cells during flow through closely-spaced plates (Halpern & Secomb 1992). 

The well-established numerical efficiency and flexibility of the boundary integral 
method makes it a strong candidate for tackling the present problem. The standard 
boundary integral formulation reduces the problem of computing a three-dimensional 
creeping flow to solving a Fredholm integral equation of the first kind for the 
distribution of the traction over the surface of the particle as well as all other 
boundaries of the flow (Pozrikidis 1992). Alternative formulations leading to integral 
equations of the second kind that are amenable to iterative solutions are discussed by 
Kim & Karrila (1991) and Pozrikidis (1992). The application of these primary methods 
to study particle motions in a channel yields a set of two-dimensional integral 
equations defined over the walls of the channel and the particle surface. Unfortunately, 
an accurate numerical solution requires discretizing three-dimensional boundaries of 
infinite extent, and yields a large system of linear algebraic equations whose solution 
demands a prohibitively large amount of computational effort. In the context of the 
present paper, these difficulties are compounded by the fact that, in general, the flow 
due to a particle in a parallel-sided channel decays at an algebraic rate, thus requiring 
a large domain for numerical computation. 

In this study, the efficiency of the boundary integral method is critically improved by 
considering axisymmetric particle shapes with axis perpendicular to the walls of the 
channel, but placed at an arbitrary position across the channel. Under these 
circumstances, all boundaries of the flow, including the particle surface and the walls 
of the channel, are axisymmetric with respect to the particle axis. This allows the 
Fourier decomposition of all flow variables involved in the boundary integral 
representation with respect to the common azimuthal angle. Separating same-order 
Fourier coefficient yields a system of one-dimensional integral equations of the first 
kind over the trace of the boundaries in an azimuthal plane. The crucial benefit is that 
the dimension of the computational problem is reduced by two units with respect to the 
dimension of the physical problem. Thus, computing a three-dimensional flow requires 
solving a system of one-dimensional integral equations, and this allows for extensive 
and accurate numerical investigations. In the special case where the boundary 
conditions for the polar cylindrical components of the velocity exhibit a first harmonic 
dependence on the azimuthal angle, we obtain three one-dimensional integral equations 
over the trace of each boundary in an azimuthal plane. 

The particular implementation of the boundary integral method developed in this 
paper proceeds by expressing the flow in terms of a single-layer potential, and then 
implementing Fourier decompositions to obtain a system of one-dimensional integral 
equations for the Fourier coefficients of the boundary surface force. The single-layer 
representation is carried out in a natural manner that preserves the identity of the 
surface force in the single-layer potential over the physical boundaries of the flow. This 
computational formalism is applicable to a broad range of problems of engineering 
interest, apart from the one considered in this study, and some examples are illustrated 
in $2.  In a companion paper, the method is applied to study shearing flow over a plane 
wall containing an axisymmetric cavity or a circular pore (Pozrikidis 1994). 

The present boundary integral method is related to that developed by Hsu & 
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Ganatos (1989) to compute the motion of axisymmetric particles above a plane wall. 
Their method begins with the standard boundary integral formulation for rigid-body 
motion, involving the single-layer potential alone and employing the Green's function 
for flow in a semi-infinite domain bounded by a rigid plane wall, and introduces 
Fourier-Legendre expansions for the surface force over the particle surface to obtain 
a system of algebraic equations for the coefficients in the expansions. Their method has 
a more general applicability than the present method, in the sense that it is capable of 
accommodating inclined particle orientations, at the expense, however, of considerable 
analytical complexity. One disadvantage is that the method of Hsu & Ganatos (1989) 
is less amenable to accommodating more general boundary shapes. Furthermore, the 
presently developed single-layer representation complements the completed double- 
layer representation developed by Kim & Karrila (1 99 1) and Pozrikidis (1992). The 
relationship between the two methods will be discussed briefly in $2 of this paper. 

In $2 we present the boundary integral formulation, illustrate its range of 
application, discuss its implementation, and develop a numerical method of solution 
that is based on a standard low-order discretization followed by pointwise collocation. 
The numerical results suggest that the method is well-posed and numerically stable, 
which means that high accuracy is achieved with moderate computational resources. 

In $3 we consider the motion of oblate spheroids above a single plane wall, with a 
main objective to demonstrate the accuracy of the numerical method by comparing the 
numerical results with available exact and numerical solutions. Apart from establishing 
a point of reference, these results reveal some interesting new behaviours. 

In $4 we consider flow in a Hele-Shaw cell past a cylindrical post, with a main 
objective to investigate the application of the boundary integral method to channel 
flow. We study the numerical implementation of the far-field boundary condition on 
the truncated computational domain, and illustrate its significance on the drag force 
exerted on the channel walls owing to the presence of the post. 

In $ 5 we study the motion of oblate spheroids and the flow past oblate spheroids in 
the Hele-Shaw cell. We outline the implementation of the boundary integral method, 
present numerical results for particles placed at the centre and off the centre of the 
channel, and discuss the effect of the particle shape on the particle motion and 
structure of the flow. 

In summary, our objectives in this paper are twofold. First, to develop and 
implement an efficient boundary integral method that is suitable for computing general 
three-dimensional flows in axisymmetric domains. Secondly, to provide accurate 
information on the motion of non-spherical particles in the Hele-Shaw channel. 

2. A boundary integral method for Stokes flow in axisymmetric domains 
We consider an arbitrary three-dimensional flow at vanishing Reynolds numbers, 

governed by the Stokes equation and the continuity equation. We select an arbitrary 
control volume in the domain of flow, bounded by a set of open or closed surfaces S,  
and apply the standard boundary integral formulation to obtain an expression for the 
velocity at a point x,, located within the control in terms of two boundary distributions 
of singular solutions to the governing equations, called the single-layer and double- 
layer hydrodynamic potential, respectively, in the form 

(Pozrikidis 1992). Herefis the boundary surface force or traction defined a s f =  c-n, 
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c is the stress tensor, and n is the unit normal vector pointing into the control volume. 
The hydrodynamic potentials shown in (2.1) have the explicit forms 

l ; (x ,  ;A S )  = S, ~ij(xo7 x)fi(x> d ~ ( x ) ,  (2.2) 

and 

(Pozrikidis 1992). G and T are, respectively, Green’s functions of the equations of 
Stokes flow for the velocity and stress. The free-space Green’s functions, representing 
the velocity and stress due to a point force in an infinite fluid, are given by 

where f = x-x,. Equation (2.1) may be used to compute the flow field at a point x, 
located within the control volume, from knowledge of the distributions of the velocity 
u and surface forcefover the set of boundaries S. If we apply (2.1) at a point x, that 
is located outside the control volume, we will find that the right-hand side is equal to 
zero (Pozrikidis 1992, chap. 2). 

The starting point in developing the present boundary integral formulation involves 
eliminating the double-layer potential from the general representation (2.1). In the 
particular case of ( a )  flow due to a moving rigid body or, (b) incident flow urn past a 
body executing rigid-body motion, the elimination may be effected in a natural manner 
that preserves the exact form of the single-layer potential yielding, respectively, 

Here, with the use of an appropriate Green’s function, the set S was reduced to the 
surface of the body S, alone (Pozrikidis 1992, chapter 2). 

Under more general circumstances, the single-layer potential may be eliminated by 
introducing extraneous single-layer distributions over surfaces that are located outside 
the control volume. One such elimination will be described in $4 with reference to flow 
in the Hele-Shaw cell past a cylindrical post. The final outcome is an expression for the 
velocity in the form 

where Di (i = 1,2, ... , K ) ,  is a collection of open or closed subdomains that either 
belong to the set S, which contains all boundaries of the control volume, or are located 
outside the control volume. In the second case, the distribution offover Dt is assumed 
to be known. The set of all Di includes the set S. urn represents a known incident flow. 

Equation (2.6) applies at points x, that are located within the control volume, as well 
as at points x,, located on any of the subdomains Di that belong to the set S. Applying 
(2.6) at points on these subdomains, and specifying the boundary velocity, reduces (2.6) 
to a Fredholm integral equation of the first kind for the boundary distribution of the 
surface forcef. Solving this equation and substituting the solution back into (2.6) 
allows the computation of the velocity at any point within the control volume. These 
developments complete the formulation of the problem in terms of an integral equation 
of the first kind for the boundary surface force. 
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FIGURE 1. Examples of three-dimensional flows in axisymmetric domains. (a) Flow past an 
axisymmetric particle above a plane wall; the axis of the particle is perpendicular to the wall. (b)  Shear 
flow over a plane wall with an axisymmetric cavity; the shape of the cavity may be a section of a 
sphere. (c) Shear flow over a plane wall with a cylindrical pore of finite or infinite depth. (d )  Shear 
flow over a plane wall with an axisymmetric protrusion; the protrusion may represent a blood cell 
adhering to a vessel wall. 

2.1. Axisymmetric boundaries 

At this point, we confine our attention to flows that are bounded by axisymmetric 
surfaces. Examples include flow past an axisymmetric particle located above a plane 
wall, illustrated in figure 1 (a), a flow over a plane wall with an axisymmetric cavity or 
a cylindrical pore of finite or infinite depth, illustrated in figures 1 (b, c), and shearing 
flow over a plane wall with an axisymmetric protrusion such as a section of a sphere 
or a cylinder, illustrated in figure 1 (d). Additional examples are flow in a Hele-Shaw 
cell past a cylindrical post, illustrated in figure 3 (a), and flow past a particle in the Hele- 
Shaw cell illustrated in figure 4 (see also Pozrikidis 1994). 

Expanding the polar cylindrical components of the velocity, boundary surface force, 
and single-layer potential, in complex Fourier series with respect to the azimuthal angle 
$ over each axisymmetric subdomain Di, we obtain 

m x 

U a ( x 0 ,  g o ,  $0) = c aan(xO, g o )  exp (in$o), f j ( l ,  $1 = c ~ n ( l >  exp (in$),) 

where Greek indices stand for the polar cylindrical coordinates x, g, or q5. Here Ci is 
the trace of the boundary Di in the x,y azimuthal plane, 1 is the arclength around Ci, 
and repeated Greek but not Roman subscripts are summed over x, CT, and q5. The 
particular form of the matrix Q,[, depends upon the choice of Green's function 
(Pozrikidis 1992, $2.4). 
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Substituting the Fourier series (2.7) into the boundary integral equation (2.6) and 
collecting same-order Fourier coefficients yields the following integral relation between 
the Fourier coefficients of the velocity and boundary surface force : 

Applying (2.8) at points located on the contours C, corresponding to the physical 
boundaries of the flow comprising the set S, and requiring boundary conditions for the 
velocity, yields a system of Fredholm integral equations of the first kind for the 
unknown Fourier coefficients of the boundary surface force dn over these C,. The 
Fourier coefficients over the contours C, that do not below to the set S are assumed to 
be known. 

In summary, the two main steps that led us to the integral equation (2.8) are the 
representation of the flow in terms of a single-layer potential, and the Fourier 
expansion of all terms in the boundary integral equation. 

Hsu & Ganatos (1989) obtained a system of equations similar to (2.8), applicable for 
the particular case of a particle moving above a plane wall, and then expanded&jn in 
Legendre series with respect to distance along the particle axis and performed the 
integrations analytically, thereby replacing the integral with a double sum. 

Kim & Karrila (1991) developed an alternative formulation that begins by 
representing the flow in terms of the competed double-layer potential, and then 
proceeds by applying Fourier decompositions. This yields a set of integral equations of 
the second kind for the Fourier coefficients of the density of the double-layer potential. 
Comparing the single-layer to the double-layer formulation, we find that the former 
offers analytical simplicity and circumvents introducing artificial densities of 
hydrodynamic potentials. The double-layer formulation, however, has the important 
advantage that it allows for iterative solutions and, therefore, it is designated for flows 
with a multitude of boundaries, such as the flow past a collection of suspended 
particles. 

2.2. Boundary conditions with first-harmonic dependence on the azimuthal angle 
We now focus our attention further to situations in which the boundary conditions for 
the polar cylindrical components of the velocity exhibit first-harmonic dependence on 
the azimuthal angle, in the form 

(2.9) 
where U,, U,, and U4 are three arbitrary real functions. In terms of the corresponding 
Fourier coefficients introduced in (2.7), we obtain 

u, = U,(x) cos $, u, = U,(x) cos $, zio = - U&x) sin $, 

uZl = uz(-l) = fU,(x), <dr1 = a,,--1) = +U,(x), udcll = - adp(-l) = iiU,(x), (2.10) 
where i is the imaginary unit; all other Fourier coefficients are equal to zero. Although 
at first sight they may appear quite specialized, conditions (2.9) are able to 
accommodate a broad class of flows, including the flows illustrated in figure 1 (a-d). 
Equations similar to (2.9) and (2.10) are assumed to apply for the incident flow urn. 

The linearity of (2.8) suggests that, correspondingly, all but the first-order Fourier 
coefficients An vanish and, furthermore, it dictates setting 

where A',, A, and& are three independent real functions. Relations (2.1 1) are equivalent 

A1 =&l) -A,  A1 =A(-l) =A, 41 = -&(-l) = b$? (2.11) 

to 
f, = 2Acos4, f, = 2Acos4, f4 = -2Asin4. (2.12) 



206 C. Pozrikidis 

Substituting (2.10) and (2.1 1) into (2.8) and simplifying we obtain the following 
system of three scalar real integral equations of the first kind for the unknown Fourier 
coefficients of the surface force: 

ua(xo, no) = u,"(xo, Qap(2, ~3 vo)$(x, c) adl(x). (2.13) 

Adopting the free-space Green's function given in (2.4), we find that the kernel @ is 
given by 

Z,, + 4 a I 3 ,  - g " U  

- no Z3J I,, + (g; + a 2 )  132 - an0(Z3, + 131) 
'n(Z30-'32) 110-Z12! + g2('30-Z32)-ng0(~331-133) 

1 Z g o ( Z 3 2  

I l o - 1 1 2 +  n ~ ( r 3 n - I 3 2 ) - n n o ( 1 3 1 - 1 3 3 )  (2.14) 
112  + g c n ( 1 3 i  -133)  

where 2 = x-x,,, and 

with 

(2.15) 

(2.16) 

The integrals on the right-hand side of (2.15) may be expressed in terms of complete 
elliptic integrals of the first and second kind which, in turn, may be computed using 
either iterative methods or polynomial approximations (Pozrikidis 1992, chap. 2). 

Once the solution to (2.13) is found, the y-component of the force and the z- 
component of the torque exerted on the boundary Di are computed by contour 
integration as 

(2.17) 

and (2.18) 

2.3. Numerical solution of the integral equation 
The problem is reduced to solving the system of three Fredholm integral equations of 
the first kind shown in (2.13) for the unknown Fourier coefficient vectorfover selected 
contours Ci. For this purpose, we discretize each contour Ci into a set of boundary 
elements that are either straight segments or circular arcs, assume that f is constant 
over each element, and apply (2.13) at the midpoint of each element to obtain a system 
of linear equations for the values f over all elements. This procedure yields a second- 
order accurate numerical method with respect to the number of boundary elements. 
The distribution of the element size is adjusted so as to provide us with adequate 
resolution at regions where the solution exhibits sharp variations. 

The kernel of the integral equation, @, shows logarithmic singularities at the 
collocation points. Specifically, as x tends to xn, the off-diagonal components of @ 
exhibit a regular behaviour, but the diagonal components QZz, @,,, Goo behave in a 
singular manner as - 2 In r, - 2 In r, and - 4 In r ,  where r = /x - xo(. To compute the 
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singular boundary integrals with sufficient accuracy, we subtract-off the singular 
logarithmic contributions and then integrate them analytically over each singular 
element. The non-singular and regularized boundary integrals are computed using the 
six-point Gauss-Legendre quadrature. 

To validate the numerical procedure we carried out a number of test computations. 
In one case we considered the translation and rotation of oblate spheroids along or 
about a major axis in infinite fluid, and obtained excellent agreement with the known 
exact analytical solution (the boundary integral formulation for this flow will be 
discussed in $3). In another case we considered simple shear flow u = (0, kx, 0) past a 
stationary spherical particle, where k is the shear rate, and found excellent agreement 
with the exact solution which is given by += ,uk/(2a)[c~,4x,4x]. In all cases the 
convergence of the numerical solution was confirmed to be quadratic. Additional tests 
of accuracy and further considerations of the numerical method will be presented in 
subsequent sections. 

3. Oblate spheroids above a single plane wall 
As a first step toward studying particle motions in a channel, we consider flow in the 

presence of a single plane wall, illustrated in figure 2(a) .  We are interested in computing 
the force and torque exerted on an axisymmetric particle that either translates along 
the y-axis or rotates around an axis that passes through its centre and is parallel to the 
z-axis. In addition, we are interested in computing the force and torque exerted on a 
particle that is held stationary in an incident simple shearing flow along the y-axis, as 
shown in figure 2(a).  These results will serve to demonstrate the accuracy of the 
numerical method, but in addition, they will reveal certain new physical features of the 
flow regarding the effect of particle shape. 

Following established notation, we express the force and torque exerted on a particle 
that translates along the y-axis with velocity V in terms of dimensionless resistance 
coefficients F' and T T  as 

F = - 6npa VFTj ,  T = 8npa2 VTTk,  (3.1) 
where a is the major axis of the generating ellipse, and j ,  k are, respectively, the unit 
vectors in the JI- and z-directions. The superscript T stands for 'translation'. 

Similarly, we express the force and torque exerted on a particle that rotates about 
an axis that passes through its centre and is parallel to the z-axis with angular velocity 
52 as 

The superscript R stands for 'rotation'. 
F = ~ I T ~ U ~ S L F ' ~ ~ ,  T = - 8npa"52TRk. ( 3 4  

F = 6n,ualkFSj, T = 4npa3kT"k, (3.3) 

For a particle that is held stationary in the incident shear flow u = (0, kx, 0) we write 

where 1 is the distance of the particle centre from the wall. The superscript S stands for 
'shear flow'. 

Not all of the above drag coefficient are independent; the reciprocal theorem for 
Stokes flow requires that F R  = $TT (Pozrikidis 1992, chap. 1). In the absence of the 
wall, the coefficients T" and F R  are equal to zero, and F" = - F T ,  T" = - T'. 

3.1. Boundary integral ,formulation and computation of forces and torques 
Considering first flow due to a particle that translates along the y-axis with velocity V 
or rotates around an axis that passes through its centre and is parallel to the z-axis with 
angular velocity 52, we begin with the single-layer representation given by the first 
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FIGURE 2. (a)  Schematic illustration of an oblate spheroid located above a plane wall with axis 
perpendicular to the wall. Drag coefficients for: (b, c) translation, (d )  rotation, and (e,J') shear flow, 
plotted with respect to particle elevation or wall-particle gap. The subscript co designates the 
respective coefficients for unbounded flow. 
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equation in (2.5) and arrive at the integral equation (2.13) with two boundary 
contours: the trace of the particle C,, and the trace of the wall C, in the $ = 0 
azimuthal plane which lies in the x,y-plane. The incident flow vanishes. 

In the case of translation we require u, = 0, uy = V,  u, = 0 on the particle surface, 
yielding U, = 0, U, = V,  U, = V. In the case of rotation we require 

u, = -Qy,u, = Q(x- l ) ,u ,  = 0 

on the particle surface, yielding U, = -Q2n(x), U,, = Q(x- I ) ,  U$ = Q(x- I ) ,  where the 
notation ~ ( x )  emphasizes that, on the surface of the particle, c is a function of x. In 
both cases of translation and rotation we require U, = U, = Ue = 0 over the wall. 

For unidirectional flow along the y-axis past a stationary particle, u“ = [0, V(x), 01, 
we begin with the single-layer representation, given by the second equation in (2.5), and 
arrive at (2.13) with the two contours C, and C, mentioned above. On the surface of 
the particle we require that the velocity vanishes. Introducing the disturbance flow 
uD = u-um we write 

u = 0 or uD = -urn = [O, - V(x), 01, 

yielding U,D = 0, U f  = - V(x), U f  = - V(x), where the superscript D stands for 
‘disturbance’. For a simple shear flow, V(x) = kx, where k is the shear rate. 

In the case of translation and rotation, the force and torque exerted on the particle 
are computed using (2.17) and (2.18). In the case of shear flow past a stationary 
particle, we use the reciprocal theorem for Stokes flow to obtain the force and torque 
in terms of the distributions of the surface force on the particle for rigid-body motion, 
using the equations 

where the superscripts T and R designate ‘translation’ and ‘rotation’. Using (3.4) 
bypasses the explicit computation of the shear flow and serves as an independent check 
of the accuracy of the computations. 

3.2. Results and discusion for  oblate spheroids 
We carried out a series of computations with 32 and 64 boundary elements in the shape 
of straight segments, evenly distributed with respect to the natural meridional 
coordinate of the elliptical coordinate system over the contours of the oblate spheroids, 
and an equal number of elements over the trace of the wall C, truncated at various 
levels, usually at 2n/a = 20 or 30. In order to resolve the fine structure of the flow, the 
wall elements were concentrated around the axis. The ratio of lengths of the last wall 
element, away from the axis, to the first element, adjacent to the axis, was set equal to 
30. These computations were followed by Richardson extrapolation with quadratic 
accuracy for improving the accuracy. A complete computation required approximately 
30 s of CPU time on a SUN SPARCstation IPC. 

In figure 2(b-f) we plot the resistance coefficients defined in (3.1), (3.2), and (3.3) for 
translation, rotation, and shear flow, reduced with respect to the corresponding 
coefficients for unbounded flow. The graphs are drawn with respect to either 
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particle-wall distance l / a  or particle-wall spacing 6/a ,  and extend down to &/a = 0.10. 
Comparing the numerical results for the spherical particle, u/b = 1, to the analytical 
results tabulated by Goldman et al. (1967a, b), and the numerical results for a / b  = 2 
to the numerical results tabulated by Hsu & Ganatos (1989), we find agreement at least 
up to the fourth significant figure for all drag coefficients. These successful comparisons 
testify to the accuracy and efficiency of the present boundary integral formulation and 
numerical method of solution. 

As the gap S tends to zero, the resistance coefficients for translation and rotation 
F T ,  T T ,  F R ,  T R ,  exhibit singular behaviours, whereas those for shear flow F" and T" 
tend to obtain constant values. For a spherical particle, a / h  = 1, the latter are in 
excellent agreement with the exact values 1.7005 and 0.943 99 computed by Goldsmith 
et al. (1964b). As the aspect ratio a / b  tends to infinity, the families of curves in the 
figures tend to limiting curves corresponding to a thin disk of infinitesimal thickness. 
The convergence to the thin-disk solutions is rapid for all drag coefficients except 
for T". 

Hsu & Ganatos (1989) present extensive numerical data for the two aspect ratios 
a / b  = 2 and 10, and our numerical results provide information for particles with 
intermediate shapes revealing some new features. First, we note that at large 
particle-wall spacings, the effect of aspect ratio has a noticeable but not drastic 
influence on all drag coefficients except for the torque coefficient T". Physically, this 
implies that the torque exerted on a particle that is held stationary in an incident shear 
flow increases dramatically as the particle obtains a more disk-like shape, thereby 
suggesting that the motion of flat particles, such as red blood cells, differ significantly 
from the motion of spheres. 

Figure 2(c) shows that the curve for the torque coefficient T T  for a spherical particle 
shows a monotonic behaviour with positive values. The corresponding curve for 
a / b  = 1.10 changes sign twice, at two different particle-wall spacings. At these 
positions, the torque exerted on a translating particle and the force exerted on a 
rotating particle are equal to zero. This implies that, under the action of a force 
directed along the y-axis, the particle will keep translating parallel to the wall without 
changing its orientation and thus, without exhibiting lateral motion. The curve for 
a / b  = 1.25, on the other hand, shows a monotonic behaviour with negative values. 

We thus find that there is a narrow window with respect to particle aspect ratio 
within which steady translation parallel to the wall is possible at two different 
particle-wall spacings. Nearly spherical particles and disk-like particles will rotate in 
opposite directions as they start translating parallel to a plane wall, and will tend to 
migrate in opposite directions as they start rotating around an axis that is parallel to 
the wall. To this end, it is interesting to note that the value of T T  exerted on toroidal 
particles is always positive (Kucaba-Pietal 1986), thereby demonstrating the im- 
portance of particle shape on the character of its motion. 

4. Flow in a Hele-Shaw cell past a cylindrical post 
To investigate the application of the present boundary integral method to channel 

flow, we consider pressure-driven flow in a Hele-Shaw cell past a cylindrical post 
illustrated in figure 3 (a). This problem has a long history in fluid dynamics dating back 
to Hele-Shaw and Stokes (a review is given by Lee & Fung 1969). Recent interest was 
motivated by applications in pulmonary blood flow and flow within coating dies past 
arrested particles (Vrahopoulou 1992). 

Our main goal in this section is to illustrate the formulation of the boundary integral 
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FIGURE 3. (a) Schematic illustration of plane Couette flow in a Hele-Shaw cell past a cylindrical post; 
(b) the distribution of the disturbance stresses along the upper wall for three types of far-field 
boundary condition and different levels of numerical truncation of the domain of flow. 

method and discuss its numerical implementation. In a numerical method of solution, 
the infinite domain of flow must be truncated at a finite length, and the natural far-field 
boundary condition must be replaced by an approximate artificial boundary condition. 
We shall show that the choice of this condition has a negligible effect on the structure 
of the flow in the vicinity of the post, but has a first-order effect on the magnitude of 
the drag force exerted on the two plates. 

In figure 3 (a) we present a schematic illustration of pressure-driven flow in a Hele- 
Shaw cell of thickness 2h past a cylindrical post of radius a. In the absence of the post 
we obtain unidirectional plane Hagen-Poiseuille flow with velocity and pressure given 
by 
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where U = G/(2ph2)  is the centreline velocity, the constant G = - dP/dy is equal to the 
negative of the undisturbed pressure gradient, and the superscript P stands for 
'parabolic'. The no-slip and no-penetration conditions require that the velocity 
vanishes over the surface of the cylinder and the two walls. 

Far from the cylinder, the disturbance flow due to the post behaves like the flow due 
to a point force whose strength is equal to the negative of the drag force exerted on the 
cylinder. This suggests that the disturbance velocity decays as 1/u2 whereas the 
disturbance pressure decays as I/u. These scalings suggest that the disturbance force 
exerted on the two plates is not equal and opposite to the drag force exerted on the post 
(Lee & Fung 1969). 

4.1. Boundary integral formulation and boundary conditions 

As a first step towards developing the boundary integral formulation, we express the 
flow in terms of a single-layer potential. We thus consider the disturbance flow due to 
the post, and select a control volume that is confined by the axisymmetric surfaces D,, 
D,, D,, whose traces in the x,y-plane are the contours C,, C,, C, illustrated in figure 
3(a). The collection of D,, D,, D, comprises the set S introduced in $2. 

Applying the boundary integral equation (2.1) at a point x, that is located within the 
control volume, and noting that the disturbance velocity vanishes over D,, we find 

The superscript D stands for 'disturbance'. The orientation of the normal vector, 
which is inherent in the single-layer and double-layer potentials, is depicted in figure 
3 (4. 

Next, we consider the undisturbed parabolic flow u p  and apply the boundary 
integral equation (2.1) at the same point x, using as control volume the interior of the 
cylinder, to obtain 

(4.3) 

Here the superscript P stands for 'parabolic'. The normal vector in (4.3) points outside 
the cylinder, as shown in figure 3(a). 

Adding the left-hand side of (4.3) to the right-hand side of (4.2) and taking 
into account that the total velocity over the surface of the cylinder must vanish, i.e. 
un + up = 0 over D,, we obtain 

Now, we argue that as the radius R of D, tends to infinity, the corresponding double- 
layer potential makes a vanishing contribution, and the last term on the right-hand side 
of (4.4) may be discarded. We note, however, that this simplification is valid only when 
the integral equation is applied at a point x, that is far from D,. 

Having developed the desired single-payer representation, we apply the Fourier 
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decompositions outlined in $2 to derive a set of three scalar integral equations for the 
Fourier vector f ,  

(4.5) 
Using (4.1) we find that the Fourier vector f p  over C, is given by 

(hp,~p,&p) = iG(g, - h, -h)  at x = h, (hp,Ap,dp) = -iG(a, h, h)  at x = - h. 
(4.6) 

These expressions are used to evaluate the integral over C, on the left-hand side of (4.5) 
which thus becomes a known. 

To complete the definition of the problem, we require boundary conditions for the 
velocity over the contours C,, C,, and C,. Over the first two contours we stipulate that 
uD = -up and uD = 0, respectively, to obtain 

(U,", U,D, Up") = [O, - u:(x), - u:(x)] over C,, U" = 0 over C,. (4.7) 

The precise form of the boundary condition over the computational boundary C, is 
responsible for establishing the far-field behaviour of the flow and, therefore, for 
determining the magnitude of the drag force exerted on the two plates. We have 
implemented three types of far-field condition. 

Condition (i): assuming that the radius R of C, is sufficiently large, we discard the 
integral over C, to obtain a system of integral equations for the Fourier coefficientsf 
over C, and for the disturbance Fourier coefficientsf" over C,. 

Condition (ii) : we maintain the integral over C, and require the boundary condition 
uD = 0 over C, to obtain a system of integral equations for the Fourier coefficients f 
over C, and for the disturbance Fourier coefficientsfD over C, and C,. 

Condition (iii) : we maintain the integral over C, and require a boundary condition 
for the disturbance velocity that derives from the asymptotic solution of Lee and Fung 
(1969). In our notation, this condition takes the form 

G a, K,(A) 
(U,". U,D, U i )  = ~ ( h 3 - x z ) - - ( 0 ,  1, - 1) 

P f l z  K"(A) 

over C,, where A = na/(2h)  and K,, and K, are modified Bessel functions. 
It should be noted that implementing the boundary condition (iii) is not entirely 

consistent with the boundary integral equation ( 4 3 ,  for the double-layer potential 
over C, on the right-hand side of (4.4) has already been discarded. We shall see, 
however, that the numerical results obtained by using this condition are in excellent 
agreement with the series solution of Lee & Fung (1969). An explanation for this 
behaviour is that since both the disturbance velocity and Green's function for the stress 
decay as 1/02 far from the cylinder, as the radius R of D, tends to infinity, the 
contribution of the double-layer integral over C, on the right-hand side of (4.4) decays 
as l/03. On the other hand, the disturbance pressure and Green's function for the 
velocity decay as l /v  which implies that the contribution of the single-layer integral 
over D, to the right-hand side of (4.5) decays as l /g .  The faster decay of the double- 
layer potential compared to that of the single-layer potential renders the single-layer 
potential dominant as far as determining the far-field behaviour of the flow. 
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FIGURE 4. Schematic illustration of flow past an axisymmetric particle in a Hele-Shaw cell. 

Far-field condition R l a  fw fc 

(9 20 
30 
40 

(ii) 20 
30 
40 

(iii) 20 
30 

Lee & Fung, two-term 
Lee & Fund, exact (estimated) 

3.896 
3.922 
3.931 

-1.311 
- 1.316 
- 1.340 

1.391 
1.377 
1.362 
1.320 

4.919 
4.935 
4.940 
4.984 
4.964 
4.957 
4.949 
4.949 
4.963 
4.938 

TABLE 1. The drag coefficients on the upper plate and cylinder for various far-field conditions and 
radii of the computational domain of flow 

4.2. Results and discussion 
In figure 3(b) we plot the three components of the disturbance Fourier coefficient 
vector f” over the trace of the upper plate for h /a  = 1, computed using the far-field 
condition (i) with R / a  = 20,40; the far-field condition (ii) with R / a  = 20,40; and the 
far-field condition (iii) with R / a  = 20. In the same figure we also show the predictions 
of the solution of Lee & Fung (1969) obtained by maintaining two terms in the exact 
series expansion, presented in the Appendix. 

All numerical solutions agree well with each other in the vicinity of the cylinder, but 
show distinct far-field behaviour. The numerical solution with far-field condition (iii) 
shows excellent agreement with the two-term solution of Lee & Fung at large distances 
from the cylinder. The discrepancies near the cylinder are due to the inherent error 
from the two-term truncation. As the radius of the computational domain R / a  is 
increased, all numerical solutions tend to the two-term solution of Lee & Fung. 

In table 1 we present the dimensionless drag coefficients f ,  and f ,  defined on the 
basis of the equations Fg = -4n,uUhfwj and F, = -4n,uUhf,j, where FK is the 
disturbance drag force exerted on the upper wall, F, is the force exerted on the 
cylinder, a n d j  is the unit vector in the y-direction. At the end of the table we also show 
the predictions of the exact and the two-term expansion of Lee & Fung presented in 
the Appendix. The exact values were computed from the approximate values taking 
into account a 0.5% error reported by Lee & Fung. 

We observe that as R / a  is increased, the drag coefficient f ,  computed using the far- 
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field conditions (i) and (ii) tend to those predicted by the exact solution, and that the 
value of f c  computed using the far-field condition (iii) remains close to the exact value. 
Most rapid convergence is achieved by using the far-field condition (i). The drag 
coefficient f, shows a notable sensitivity to the type of far-field condition, and may 
take either positive or negative values. The values of f w  computed using the far-field 
condition (iii) are in fair agreement with the analytical predictions of Lee & Fung. 

Overall, the results of this section demonstrate the importance of domain truncation 
on the far-field behaviour of the flow and on the magnitude of the drag force exerted 
on the plates. More importantly for our purposes, they demonstrate the insensitivity 
of the flow in the vicinity of the cylinder to the nature of the far-field condition, and 
suggest using condition (i) for fastest convergence with respect to domain truncation. 

5. Particle motion in the Hele-Shaw cell 
Having considered the motion of particles in an infinite fluid, and having investigated 

the implementation of the boundary integral method to channel flow, we proceed to 
consider the motion of particles in a Hele-Shaw cell illustrated in figure 4. We are 
interested in computing the force and torque exerted on a particle that (a) translates 
or rotates in an otherwise quiescent fluid, or (b) is held stationary in the incident 
Couette flow urn = (0, kx, 0) or Poiseuille flow described in (4.1). The drag coefficients 
for translation, rotation, and Couette flow were defined in (3.1), (3.2), and (3.3). For 
Poiseuille flow we introduce the additional coefficients F p  and T P  defined by the 
eauations 

au; 
F = 6npau,P(x) F P  j ,  T = 4npa3 (=) T P  k, 

x=c 

where x = c is the particle centre. When the size of the particle is small compared to 
the clearance of the channel, F p  and T P  reduce to the corresponding coefficients for 
shear flow in an unbounded fluid, with shear rate equal to the local slope of the 
velocity. 

5.1. Boundary integral formulations 
Considering the flow due to a particle that translates along the y-axis or rotates around 
an axis that passes through its centre and is parallel to the z-axis in an otherwise 
stationary fluid, we follow a procedure similar to that outlined in 93 to obtain the 
integral equation 

,. 

C, is the trace of the particle, C2 is the trace of the walls, and C, is a numerical 
boundary that is located at (T = R as shown in figure 4. 

The boundary conditions on the particle surface were discussed in 93. Over the 
walls of the channel we require the no-slip and no-penetration conditions, yielding 
U = (O,O, 0) at x = f h .  Two choices for U over C, are provided by the far-field 
conditions (i) and (ii) discussed in 94. Physically, condition (i) corresponds to flow due 
a particle that moves between two circular disks or radius R immersed in a pool of 
stagnant fluid. Condition (ii) corresponds to the flow due a particle that moves in a 
circular Hele-Shaw cell of radius R which is sealed around the rim. For a sufficiently 
large radius R, using either condition yields virtually identical results for the drag force 
and torque exerted on the particle, as well as for the distribution of surface force over 
the particle surface. 
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FIGURE 5. (a-d) Drag coefficients for translation, rotation, shear and parabolic flow, for oblate 
spheroids placed at the centre of the channel; the subscript co designates the respective coefficients 
for infinite flow. (e) The convection velocity of freely suspended particles in Poiseuille flow normalized 
by the centreline velocity. 

To describe the flow past a stationary particle, we follow the procedure of $4 to 
derive the boundary integral equation 
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FIGURE 6. The distrubiton of the stresses along the upper plate due a spherical particle (solid lines) 
or a spheroidal particle with a /b  = 3 (dashed lines) translating along the y-axis at the mid-plane of 
the channel, for particle sizes: (a)  b /h  = 0.1, (6) b / h  = 0.9. 

where the superscript D stands for 'disturbance'. The boundary conditions for the 
velocity over C, and C, are analogous to those given in (4.7). For a far-field condition 
we have the choice between (i) and (ii) discussed in $4. 

The drag coefficients for shear and parabolic flow were computed using appropriate 
versions of (3.5), and the results were found to be in excellent agreement with those 
computed directly on the basis of (2.17) and (2.18), using the solution of (5.3). 

5.2. Results and Discussion 
We begin by considering particles located at the centreline of the channel, at c = 0. In 
figure 5(a-d) we plot the drag coefficients for several families of oblate spheroids of 
different sizes and aspect ratios, normalized with respect to the respective coefficients 
for unbounded flow. The drag coefficients that are not shown in the figures are equal 
to zero. We observe that as the size of the particles decreases, the effect of the walls 
becomes insignificant and all reduced drag coefficients tend to the value of unity. As 
the minor axis of the generating ellipse b tends to the semi-width of the channel h, and 
the clearance between the particle and the walls tends to zero, the drag coefficients for 
translation and rotation diverge, whereas the drag coefficients for shear and parabolic 
flow tend to constant values. 

Concentrating on the curve for the spherical particle, b/a  = 1 ,  in figure 5(a), we 
compare the numerical results with the asymptotic predictions of Faxen applicable for 
small values of b/h indicated by the dash-dot line (quoted in Happel & Brenner 1983), 
and obtain a remarkably good agreement for particles of small and moderate size up 
to b/h = 0.50. For larger particles, the asymptotic predictions substantially under- 
estimate the drag coefficients. Considering the opposite limit of tightly fitting particles 
at values of b/h  close to one, we compare our numerical results to the predictions of 
the asymptotic theory of Goldman et al. (1964a) and O'Neill & Stewartson (1964) on 
the force and torque exerted on a spherical particle that translates parallel to a single 
plane wall. To account for the presence of both walls we simply multiply the 
asymptotic expressions by a factor of two. The numerical results follow the general 
trends indicated by the asymptotic solutions, but we observe a noticeable qualitative 
disagreement even at the smallest value of the clearance considered in the computations, 
b/h  = 0.95. This behaviour is due to the slow logarithmic approach to the asymptotic 
limit. 
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FIGURE 7. (a-g) Drag coefficients for translation, rotation, shear and parabolic flow, for oblate 
spheroids located off the centre of the channel at c / h  = 0.50. The subscript co designates the 
respective coefficients for infinite flow. 
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The strong dependence of the coefficient T" on the particle size and aspect ratio is 
a striking feature of figure 5(c). For the spherical particle, T" is positive irrespective of 
the particle radius. For non-spherical particles, as the particle size becomes larger, T S  
changes sign at a critical value that depends on the aspect ratio a/b. This threshold 
value decreases rapidly as the particle aspect ratio is increased. Physically, these results 
imply that, under the action of a shear flow, small oblate spheroids will rotate in the 
direction indicated by the vorticity vector, whereas large oblate spheroids will rotate in 
the opposite direction. The later behaviour is due to the inhibiting action of the walls 
which is mediated through lubrication forces in the gaps between the particle and the 
walls. Given the particle aspect ratio, there is a critical particle size for sign reversal at 
which the particle will translate parallel to the walls without exhibiting rotation. The 
stability of this stationary motion requires further investigation. 

In figure 5(e) we plot the ratio of the velocity of translation of a freely suspended 
particle V, to the centreline velocity of the unperturbed Poiseuille flow U for several 
families of spheroidal particles with constant aspect ratio. Small particles are convected 
with nearly the centreline velocity, whereas tightly fitting particles are immobilized by 
strong lubrication forces at the points of minimum clearance. It is remarkable to 
observe that particles with b /h  = 0.50, which fill half the channel width, translate at a 
velocity that is roughly 90 YO the unperturbed centreline velocity, for all aspect ratios. 
This behaviour was noted previously for spherical particles by Ganatos et al. (1982). 
For a given particle thickness b/h,  the particle velocity decreases as the aspect ratio is 
increased, but only by a moderate factor. 

To illustrate the effect of particle aspect ratio on the structure of the flow, in figure 
6(a ,  b) we show the distribution of the stresses along the upper plate due to a 
translating spherical particle and a spheroidal particle with a / b  = 3 ,  for two different 
sizes, b /h  = 0.1 and 0.9. These results are computed using the far-field condition (i). We 
note that in all cases, the pressure coefficient A tends to zero at the origin cr = 0, 
whereas the shear stress coefficientsk and4 obtain common finite values. The general 
features of the stress distributions for small particles, shown in figure 6(a) ,  are 
insensitive to the particle aspect ratio; in both cases, the flow is similar to that 
generated by a point force located at the centre of the channel, oriented parallel to the 
walls, and with strength equal and opposite to the drag force exerted on the particles. 
The distributions of stresses for large particles, shown in figure 6(b), show a notable 
senstivity to aspect ratio in the vicinity of the particles, reflecting the onset of 
lubrication forces at the narrow gaps between the particles and the walls. Comparing 
the solid to the dashed curves in figure 6(a, b) we deduce that, given the particle aspect 
ratio, as the size of the particle is increased, the radial locations where the stresses 
attain maxima move inward, toward the particle axis, in order to accommodate the 
local lubricating flow. 

We consider next particles that are located off the centre of the channel at the lateral 
position c/h = 0.50. In figure 7(a-g) we plot the resistance coefficients for translation, 
rotation, shear flow, and parabolic flow, and for several families of oblate spheroids. 
These coefficients are reduced with respect to the corresponding coefficients for infinite 
flow. The dashed lines show the predictions of Faxen and Wakiya for small spherical 
particles (quoted in Ganatos et al. 1980b), whereas the dot-dashed lines show the 
predictions of the lubrication theory of Goldman et al. (1964a, b), taking into account 
only the effect of the closest wall. The agreement between the numerical results and the 
asymptotic predictions of Faxin is excellent even for large particles, and we observe 
that the asymptotic theory of Goldman et al. (1964a, b) successfully captures the 
singular behaviour for small gaps. As the particle size is increased, and the gap between 
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FIGURE 8. The distribution of stresses along the upper and lower walls (solid and dashed lines 
respectively) due to: (a) a spherical particle, and (b) a spheroidal particle with u/b  = 3 translating 
along the y-axis at the elevation c/h = 0.50, for particle size b/h  = 0.50. 

the particles and the upper wall tends to close, the resistance coefficients for shear and 
parabolic flow tend to finite values that become larger as the particle aspect ratio is 
increased. 

Comparing the present results for spherical particles to the corresponding numerical 
results tabulated by Ganatos et al. (1980b, table 3), we find general qualitative and 
quantitative agreement, but also occasional discrepancies. For instance, for a /c  = 0.50 
we find F” = 1.506 and T S  = 0.996, while Ganatos et al. find F S  = 1.420 and 
T S  = 1.023. In spite of an exhaustive search, the reason for these discrepancies could 
not be identified. 

The results shown in figure 7 (b)  indicate that both the sign and the magnitude of the 
torque exerted on a translating particle exhibit a strong dependence on the particle 
aspect ratio. Particles with a nearly spherical shape tend to rotate in the clockwise 
direction, whereas disk-like particles tend to rotate in the counterclockwise direction, 
just as they do when they move above a single plane wall ($3). Ganatos et al. (1980b) 
found that at c /h  = 0.50, there is a critical radius of a spherical particle at which the 
particle translates without developing a torque and rotates without developing a force. 
Our results show that this critical size is b /c  = 0.65, in rough agreement with the value 
read off the plots of Ganatos et al. To this end, we inquire whether, given the particle 
aspect ratio, there is a critical particle size for translation with zero torque or rotation 
with zero force. Figure 7 ( b )  shows that this is feasible only for particles with a nearly 
spherical shape. 

Concentrating on figure 7 (e),  we compare the numerical results to those shown in 
figure 5(c) for c / h  = 0 and find similar trends, indicating that the behaviour of nearly 
spherical particles in a shear flow is distinctly different from that of flat particles, 
independently of the particle location across the channel. 

To illustrate the effect of particle aspect ratio on the structure of the flow, in figure 
8(a, b)  we plot the distribution of stresses along the upper and lower walls due to a 
translating spherical particle and a spheroidal particle with a /b  = 3 .  In both cases, the 
particles occupy half the clearance of the channel, b / h  = 0.5. Solid lines correspond to 
the upper wall, and dashed lines correspond to the lower wall. One notable feature of 
the flow in the vicinity of the particle is the increased magnitude of the stresses on the 
upper wall compared to those on the lower wall. The general features of the stress 
distributions on the lower wall are quite insensitive to the particle aspect ratio, but 
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those over the upper wall show a significant dependence on the particle aspect ratio. 
The stress distributions on the upper wall are similar to those shown in figures 6(a, b) 
for motion along the centre of the channel. Far from the particle, the solid and dashed 
curves collapse as the distribution of stresses tend to become identical, but with a 
change in sign for the normal stress due to the opposite orientations of the normal 
vector. 

This research is supported by the National Science Foundation, Grants CTS- 
9020728, CTS-9216176. Partial support was provided by the Department of Energy 
and the Exxon Education Foundation. 

Appendix 
We consider Poiseuille flow in the Hele-Shaw cell past a cylindrical post. Using the 

nomenclature of $32 and 3 and the notation of figure 4, we find that the Fourier 
coefficients of the disturbance surface force along the upper plate, as predicted by the 
approximate two-term expansion of Lee & Fung (1969), are given by 

where A = na/(2h) and KO and K2 are modified Bessel functions. The dimensionless 
drag coefficients on the cylindrical post and the walls are given by 
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